Temporalization of Modal Logic

— Morphological Analysis for Logic —

Mitsuhiko Fujio
Computer Science and
Systems Engineering
Kyushu Institute of Technology
Kawazu 680-4, lizuka, Fukuoka 820-8502, Japan
Email: fujio@ces.kyutech.ac.jp

Abstract— A temporalization of a modal logic is a temporal latticesX and A respectively.D and E are respectively called

logic containing the modal logic and the temporalization problem  analgebraic dilation and arerosion. This algebraic framework
is the problem of construction and classification of temporal- is also applied to investigate modal logic

ization for a given modal logic. A temporal logic carries two B . . . .
dual pairs of modal operators (F,G) and (P, H). By taking An adjoint pair of modal operators is considered in [10]

each pair of them, one obtains a normal modal logic. In this @nd it is shown that giving an adjoint pair of modal operators
situation, we refer to the temporal logic as a strict temporalization is nothing but considering temporal logic ([1]). For precise,
of the normal modal logic. Under mathematical morphological consider a normal modal logiE accompanied with an adjoint

investigation over non-classical logics, the author showed that an pair of modal operators>; and O,. Adjointness for modal
adjoint pair of modal operators gives rise to a temporal logic ([1]). ¢ is defined by th dition that
This result can be used to show the existence of a temporalization operators Is aefined by the condition tha

for a normal modal logic. By combining with canonical models, ; O
mathematical morphology illustrates the relationship between a (Ad.) C16 > ¢ it ¢ — Doy,

modal logic and its temporalization. In this article, we will show Namely, the formula®>,¢ — 1 is a theorem of if and only
how morphological analysis is applied to the temporalization if so is the formulag — Dyeb. We note that, since>, and
problem. O, are not necessarily dual to each other, we use the letter
I. INTRODUCTION O to distinguish it from the dual of;. On the other hand,
. o we denote the dual of; by O; and of Oy by <5. Thus,
I\_/Iathematlcgl morphology was first introduced as an anQrthough we have started with a modal logic with only two
lyzing tool for image processing by shape ([2]) and has begty, o operators,, 0,), it naturally possesses additional two
developed as a systematic non-linear analysis methOdOIClﬂ}’eratorsQZ, 0,). With these four operators, it is shown that

([3]). Theoretically, it is founded on complete lattices ([4lye congition (Ad.) is equivalent to the following two axioms:
[5], [6]) and its methodology has been also extended there

([7])- Within its wide range, the regions of logic and language (Tmp.) ¢ — 02019 and ¢ — 0,029,

seem most promising areas of application. Because the NYfase axioms are known #se converse axioms in temporal
numeric and structural methods of mathematical morphologyiic 111]). For the traditional notation of temporal logic, one
fit well for these regions. In particular, many lattices naturallgf dual pair, say(<1,d;), corresponds to the paif, &) and
rise and play central rolls there. _the other, say(<¢», O,), corresponds to the pai®, H). In
A direct appllca_mon of mathematical morphology to logiG,q case, not only ¥, H) but also(P,G) is an adjoint pair.
causes modal logic ([8], [9], [10], [1]). The fundamental oper- o semantical point of view, this mechanism of derivation
ators ofdilation D anderosion £ in mathematical morphology ¢ temporal logic from an adjoint pair of modal operators
related to the modal operatots and 0 by can be explained more explicitly. Now we begin with 2-
_ _ dimensional modal languag@® with the modal operators
Coll=D ) O¢||=FE ) i : ) :
[odl (llot) i r(llot) &4, O; (@ = 1,2). The notion of a 2-dimensional model is
where ||¢|| denotes thetrue set (or meaning) of a modal obviously modified from that of 1-dimensional one by adding
formula ¢ in a standard model. Moreovedp)r and Er another accessibility relatiokR’. Then the notion of true set
respectively denote theet dilation and erosion defined by is also extended to 2-dimensional modal formulas so as for

the accessibility relatioriz of the model. ¢ € P2,

We note that the pairs of operators appearing in this case are _ _
both dual,i.e, Er = CDxC andO = =&, HereC denotes 101011 = Dr(ll91)), 102611 = Er(l91]),
the complementation of sets and denotes the negation of 1020l = Dre(lloll), 1029l = Er(ll¢]l)-

formulas. On the other hand, in the extension to completg o . ) .
latti dilationD and erosionE are treated as to constitut In traditional temporal logic, the meanings of these operatord are” ¢
a |ce.s,' I '_ : I .' UtEyill be true at someruture time”,G¢: “¢ is alwaysGoing to be true”,P¢:
an adjoint pairj.e, D(z) < a < = < F(a) for z anda in  “¢ was true at som®@ast time” andH ¢: “¢ Has always been true".



It is known that for a standard model for 2-dimensional mod4l(a,z) | a € A, x € X, (z,a) € R} C Ax X or, in terms of
language to satisfy the converse axioms (Tmp.), it is necessaogyrespondencé€R : A 3 a +— {z € X | (z,a) € R} C X.
and sufficient thatk?’ = 'R ([11]). Here, R is the transpose As well as for ordinary mappings, we denote timaage of
of the accessibility relatiol®. Such a 2-dimensional model isan elementz € X under R by R(z) and that of a subset
called bidirectional. Consequently, for a temporal logic, on&¥” C X by R(Y) = [,y R(y). The usual set theoretical
should consider bidirectional models and then the true sets aneerse image of a subse® C A can be expressed as

rewritten as R~Y(B) ='R(B) in our notation.
10161l = Dr (llgll), 15161l = Er(llgll), B. Dilation and Erosion
020 = Der ([18]]), 1029]| = Ewr (||0]]). Notions of dilation and erosion were extended to complete

. . . . lattices and general properties are investigated ([4], [6], [7]).
As we will recall in the next section, the pairs of morphologl—:or the sakg of devzloSment of morphol%gical (gn]al[ys]is[ f33)r

L?grlnogzrrr?;%rtiséz}%7(])?;1?0?”\25;(\/1\/113\’/5% Lsiierfvea(:Loé?t' iI;us’anrmal systems of logic which are not complete in general, we
- . P ’ gwing generalize these notions to partially ordered sets. For notions
adjoint pair of modal operator&>,, 0) concerns with only

a sinale accessibility relatio such that introduced here, we basically follow [7] but we consider a
ng oty : u slightly general case of non-complete lattices or more simply
|©19] = Dr(|1¢]), 1029]| = Ew(||9]]) partia_lly prdered sets ([1]). _ -
L , . Definition : Let X, A be partially ordered sets. A mapping
and then by considering their duals, a temporal logic can Be. v . 4 is called analgebraic dilation or for short
derived. Note that it cannot be determined a priori whether tgedilation iff for any family {zx} C X that admits th,e

given adjoint pair of modal operatof$>, O2) corresponds to supremum\/, z in X, the family {3(z,)} also admits the
(#, H) or (P,G). . supremum\/, é(x,) in A and

At this moment, we should recall that any ordinary dual pair
of modal operators also concerns with a single accessibility \/5@&) = 5(\/ xA> (1)
relation. Hence we can conclude that any normal modal A A

logic is accompanied by a temporal logic provided that it ig satisfied. We say that every dilation has thgremum
determined by some models. But it is true for any norm‘f}lreﬁerving property (SSP). Dually, a mapping : X — A

modal logic. That is, by virtue of Canonical Model Theoremg .ajjed analgebraic erosion or for short, anerosion iff for
any normal modal logic is determined by its canonical mod%{ny family {z,} C X that admits the infimum\, z € X

In the above case, the derived temporal logic includes tfe, family {£(z,)} also admits the infimum and
normal modal logic. In general, we call a temporal logic in-

cluding a modal logic @emporalization or temporal extension /\ g(zy) = g(/\ x)\> (2)
of the modal logic. And then the temporalization problem can A A

be posed as follows. For a given normal modal logic, hoW satisfied. Similarly to dilation, we say that every erosion has
many there exist its temporalizations and how can they B&s infemum preserving property (IPP).

classified? The above observation provides the existence Obroposition 1: Every dilation or erosion is monotone.

temporalization. We call the temporalization derived from the Example 1 (Morphology of Set Lattices): Let R C X x A

canonical model theanonical temporalization. be a binary relation. We define the following set operators

_ In this article, we will consider a strict tempor_alizatior\:rom B (A) into P (X) (notice that the direction is opposed):
in general. Namely, the case where the underlying modal

logic is obtained from the temporalization by eliminating Dr(B)={zec X | R(z)NB#0} (= ‘R(B)), (3)
the formulas containing modal operatofs, or U,. Then Er(B)={z € X | R(x) C B} (4)

mathematical morphological analysis will show that for an{ ) o
normal modal logic, the minimal temporal logic containing it°" B € B (4). ThenDg :  (A) — P (X) is a dilation and
A) — P (X) is an erosion. We calDy and E, the

and the canonical temporalization are strict temporalization@ﬁ P (

Furthermore, with canonical models, it provides a structursft dilation and theset erosion degged byR respectively.
view for temporalization procedure. By considering the transposé: of R, we also obtain

operatorsEg : P (X) = P (A), Dig : P(X) — P (A).
II. MATHEMATICAL MORPHOLOGY We note that any dilation and erosion between set lattices
In this section, we recall minimal requisites for mathare obtained in this way. In fact, for any dilatidn: B(X) —
ematical morphology. For precise description and genef(4), since any set lattice isatomic” and D has SPP by

references, readers should see [4], [7] definition, we have
A. Binary Relations and Correspondences DY) = D( U {y}) = U D({y}).
We often regard a binary relatidd C X x A as a correspon- yey yeY

denceR: X - AbyR: X >z~ {a€ A] (z,a) € R} C Thus the effect ofD on any sett” C X is determined by
A and vise versa. Theranspose ‘R of R is given by'R = its effect on each singleton. By taking the binary relation



R:X 35z~ D{z}) € A we haveD = D:z. For D. Involutions in Boolean Lattices

any ecrosc|gnE :_%FX) - ‘B(A?’ smce. its duaILi”(Y) - 1) Duality, transposition and adjunction: For erosions and
(E(Y") isa dilation, there exists a binary relatidhsuch ilations of Boolean lattices, there are three sorts of involutive
that E' = D+x. Then it can be verified thab = D« = Evz.  transformations of operators, namebyyality, transposition

"o

Relationships among “duality”, “transposition” and “adjoint’andadjunction ([4], [7]). More precisely, ifx. is a morpholog-

will be described in section II-D. ical operators ane is one of these three transformations then
7(7(n)) = p is satisfied.
C. Adjoint Definition : Let X, A be Boolean lattices andl: X — A

Definition : Let X, A be partially ordered sets anfl : be a d.ilgtion.*Then itglual o : X — A tranquse 5:A- X
X = A, g: A — X be mappings. The paiff, ¢) is called andadjoint * : A — X are respectively defined by

anadjoint betweenX and A iff Vx € X, Va € A 5(x) = -(5(-2)) (z € X)
Bla)Nz=0 & aAd(x)=0 (re X, acA),
f@w) <aew<glo) ) r<d(a) & d(x)<a (x e X,acA).
is satisfied.f is called thelower adjoint of g and alsog is  Ajthough transpose and adjoint are implicitly defined, they are
called theupper adjoint of f. uniquely determined if they exist for a given dilation.

Note : It should be remarked that in the context of category simijlarly, for an erosiore : X — A, its dual z : X —
theory €f. [12]), authors use the words “right” and “left” 4 transpose = : A — X and adjoint * : 4 — X are
instead of “lower” and “upper” to distinguish each member qlespectively defined by
an adjoint pair but in the context of mathematical morphology

(I7], [1]), the opposite naming is used. Ex) = —(e(-2) (z € X),
The following proposition gives another characterization for (@) Vz =1 & aVe(z)=1 (r€ X,a€ A),
a pair of monotone mappings to give rise to an adjoint. e(a) <z & a<e(z) (reX,a€A).

Proposition 2: Let X, A be partially ordered sets anfi: Note : We adopt a gene_ral form for definition of transpose
X - A, g: A— X be monotone mappings. For the paiF_o as to apply to any lattices that may not qulean. In the
(f.¢) to be an adjoint it is necessary and sufficient that Ilterat_ure [4], the au'ghor adopted a more restricted for_m as

described below. At first, we note that the complementation

f(g(a)) < a, r < g(f(x)) (6) of Boolean lattice satisfies

are satisfied for any € X, a € A. eNy=0 & z<y & —w\Vy=1.
Proposition 3: Let X, A be partially ordered sets and, g)
be an adjoint betweeX and A. Then

1) f is a dilation,
2) g is an erosion. Bla) <y < dx)<-a (r € X,acA),

By using this, the conditions for transpose are rewritten as for
dilation,

The converse of Proposition 3 holds under some conditiong;q for erosion
Proposition 4: Let X, A be partially ordered sets.

1) When A is a complete\/-semi lattice, for a mapping TS e(a) & —-a<e(x) (re X, a € A).
f: X — Ato be a dilation, it is necessary and sufficient Proposition 5: Let X, A be Boolean lattices.
that f is monotone and the pairf, g) is an adjoint for 1) For a dilationé : X — A to have an adjoint* is
the mapping defined by(a) =\/ ft{be A| b < a}. equivalent to have a transpo%e

2) When X is a complete/\-semi lattice, for a mapping 2) For an erosiore : X — A to have an adjoint* is
g : A — X to be an erosion, it is necessary and sufficient  equivalent to have a transpose
thatg is monotone and the pa(ff, g) is an adjoint forthe  Proposition 6: Let X, A be Boolean lattices.

mapping defined by (z) = Ag™' {y € X | z < y}. 1) For a dilations : X — A, the duald and the adjoint*
Example 2 (Adjoint of Set Lattices): Let R C X x A be a are erosions and the transpdées a dilation.
binary relation. Then the pai{iD:r, Er) is an adjoint between 2) For an erosiorr : X — A, the dualz and the adjoint
P (X) andB (4). In fact, forY” € P (X), B € P (4), * are dilations and the transposeis an erosion.
2) Interrelations among Involutions: All of the operator
Dyp(Y)C B transformations defined above are involutive. On the other
SVacAVreX(x€Y = (a € R(x) = a€ B)) hand, successive applications of operators are independent of
&Y C Ex(B). order. Furthermore, we have the following relations:

gr(n)ig\.rly, the pair(Dg, E:) is an adjoint betweef (A) and %; ig : g:: ((i?) z g: :Ig: ig; z EZ;: zg’



Example 3 (Involutions of Set Lattices): In case of a bi- set for¢,
nary relationR, for the operators = Dy ande = Ep, we

have more explicit relations: sz-II:Z =b; (value of P atp; € II)
LIl =0 (empty sex

Dr=Er  'Dr=Duw,  (Di)" =En, -6l = (el )* (complement
Ep=Dp,  'Bx=Eg,  (Eg)"=Dn. lov ol =llol vl (union)
[0l = Dg,(ll¢lI) (dilation)

By virtue of these equalities, we only have to employ 4
operators among them, for examplez, Fr, D:gr and E:g.
The relations are diagrammatically represented as follows:

A formula ¢ is said to beglobally true in an r-model .#
and denoted biz# ¢ when||¢||” = W; ¢ is said to bevalid

in a class ¢ of r-models and denoted byse ¢ when=# ¢
— for everyr-model.# in €. We call the set of all formulas in

Dr En F ¢ & that are valid in a class of-models¢ the logic of ¢ and
% % denote it by Log. We also need consider the formulasdif
t t t t (s <r) contained in Log, which we denote by Lqgy
Loge = {4 € 2" | Fe ¢}. (1)
Deg B P H

- - A special class o2-models is of bidirectional ones. Namely,
a 2-model .# = (W,R,, R, P) is called abidirectional
In this case, the diagonal paif®r, Er) and (D, Er) model if R, = 'R,. Since any bidirectional model is de-
are adjoint. Compare with the right diagram which representsrmined by pointing out a single accessibility relation, we
the relationships among the traditional temporal operators. can regardl-dimensional models as bidirectional models as
follows. For al-dimensional model# = (W,R,P), we
I1l. M ODAL LOGICS AND TEMPORAL LOGICS consider a bidirectional frame#® = (W, R,'R, P) and call
_ ) ] it the bidirectionalization of .#. Moreover, for any class df-
For basic notions and results on modal logics, we refer fgmensjonal modelg, the bidirectionalization o€ is defined
[13]. See also [11]. as the class of bidirectionalizations of model€iand denoted
by ¢b.
A. Language . ,
C. Modal Logics and Temporal Logics
a Definition : A set of formulasX C &" is called anr-
timensional modal logic if it contains all tautologies and is
closed under “modus ponens”: (MP)dfe 3 and¢ — ¢ €
X, theny € X. Furthermore, ifX contains the formulaK;)

Definition : Let IT = {py,p2,...} be a set of denumer-
able number of propositional symbols. The set of formul
generated by with classical connectives, —, VV and unary
modal operator®, ... , ¢, is denoted byp (11, ¢y, ..., <))
or briefly #7, and is called the-dimensional modal language. 0u(6 — 1) — (D — DOyb), (DFO,) Gih <> ~Di— and is
As usual, we make use of the abbreviatignsy = ~(¢V¢), closed under “necessitation(N,) if X' > ¢ thenX > 0,9, it
O v="0V ¢ =(0=2U)AY 0] T="L s clednormal.

Di\?Vh: ﬁoi;qs gs: L, b 7). " ded bsebof Remark We note that the notions of modal logic and hence
eénr 2 s, &7 can be hatura y regarded as a su sk of normal modal logic of Chellas [13] are slightly wider than
_In particular, the language of b§15|c modal logic is embeddﬂqe traditional ones. Indeed, many authors assumed that any
in the language of temporal logic. modal logic is closed under “uniform substitutions” (see, for
) example, [14], [11]).
B. Semantics We recall the following propositions ([13], [11]).

Definition : A standard model for ther-dimensional modal ~ Proposition 7: Let € be any class of-models. Then for
language, or briefly an-model is an r + 2-tuple .# = any integel < s g r, the logic Log. of ¢ is ans-dimensional
(W, Ry, ..., R, P) consisting of a non-empty s&t’, binary nhormal modal logic. _ _
relations R, € W x W (i = 1,...,r), and a mapping Proposition 8: Let X\, C &" be an arbitrary family of
P: IT — P (W). Each elementy € W is called apossible Subsets of modal language and put= [, X. Then we
world and each binary relatio®, is called thei-th accessi- have the followings.
bility relation. The assignment P is a mapping which assigns 1) If every subset, is a modal logic, then so i&'.

a subsetP; C W to each propositional symbel, € I7. The 2) If every subset¥, is a normal modal logic, then so is
set P; is called thetrue set for p;. 2.

Let .# be anr-model. We denote by:# ¢ to stand for ~ Corollary 1: The set of allr-dimensional normal modal
a formula¢ € &" is true atw in .#. The truth value of logics.#" forms a completg\-semi lattice.
each formulap € @" is recursively defined by constructions The minimal normal modal logic (usually= 1) is denoted
as follows. Denoting by|¢||‘/” ={weW| EZ ¢} the true byK. K coincides with the logic of the class of aimodels.



Many other traditional normal modal logics are defined blfrom this lemma, soundness with respect to any canonical

adding some axioms tg ([13]).
Definition : A temporal logic is a normal modal logic in
¢? satisfying the axioms

(ConV) © — |:|1<>2(p and © — D2<>1§0.

Similarly to Proposition 7 and Proposition 8, we have th

followings ([11]):

Proposition 9: Let % be any family of bidirectional mod-
els. Then the logic Lag = {¢ € * | Fig ¢} of B is a
temporal logic.

Proposition 10: Let 7, C &2 be an arbitrary family of
temporal logics. Therf’ = (), T is also a temporal logic.

Corollary 2: The set of all temporal logics7 forms a
complete/\-semi lattice.

The minimal temporal logic is denoted Isy;. K coincides
with the logic of the class of all bidirectional models.

D. Soundness, Completeness and Canonical Models

Definition : For a modal logicY’ C &", when¢ € X, we
say that¢ is atheorem of X' and write Fx ¢. Furthermore,
let I' C " and ¢ € &". When there are formulag,, ...,
¢n € I' (n > 0) such thatkx (41 A-+- A dy) — &, We say
that ¢ is deducible inX from " and write I" k5 ¢. A set
of formulas " is Y-inconsistent if I" Fx L, otherwise,I” is
X-consistent. Furthermore, ifl" U {¢} is inconsistent for any
formula¢ ¢ I', ' is said to bemaximally X’'-consistent.

Definition : Let ¢ be a class of--models andY’' be anr-
dimensional normal modal logié. is sound with respect tof
if ' C Log, or equivalently, -5 ¢ =Fy ¢. In this caseg is
called aclass of models for 2. Conversely)’ is complete with
respect to¢ if Log, C X or equivalently,Fy ¢ = k5 ¢.
Finally, X is determined by ¢ if Log, = X or equivalently,

Proposition 11: If I" C @" is a maximalX'-consistent set
for an r-dimensional modal logic-, then

1) o liff 'ty ¢.

2) I' is a modal logic containing..

3) L&r.

4 —peliff &I

5 ovyeliff peloryel.

6) <0 € I'iff ¢ € A for some maximall'-consistent set

A satisfyingo, A C I

Theorem 1 (Lindenbaum's Lemma): If I’ C &" is a X-
consistent set for an-dimensional modal logic”, then there
exists a maximaly-consistent setA C ¢" such thatl" C A.

Definition : The canonical model for X € 4" is the r-
m0d8|./%2 = (WE, REJ, Ce 7R2,r7 Pg) with

1) Wiy is the set of all maximal’'-consistent sets.

2) Rx; is the binary relation onlVx defined by( €

Rg‘i(w) iff <>i< g Ww.
3) Py is the assignment defined By (p;) = {w € Wy|
pi € w}.

Theorem 2 (Truth Lemma): Let .#x be the canonical
model for ¥ € 4" and let¢ € ¢". Then for anyw in .#,
EZ ¢ iff ¢ € w.

model follows. In fact,Fx ¢ = ¢ € w (Yw € W) =F 4 ¢.

Conversely, completeness is known as the following theo-
rem.

Theorem 3 (Canonical Model Theorem): Let .#x be the
8anonical model forY) € #". Then X' is complete with
respect ta;.

Thus any normal logic&” is determined by its canonical model
M5, namely, Log,, = Y.

For temporal logics the following lemma holds.

Lemma 1. For any1 € .7, the canonical framez; =
(WT, RT,l; RTVQ, P) is bidirectional.

IV. TEMPORALIZATION
A. Temporalization

Throughout this section, we consider over the 1-dimesional
modal languag@' embedded in the 2-dimensional language
@2, Then we can define the restriction mapping by

p:P(P°) 34— AND' € P (D).

Definition : Let . be a 1-dimensional modal logic afitde
Z. WhenX C T, we call T as atemporalization of 3.
Furthermore, ifp(T) = X, T is called astrict temporalization
of Y.

When p(T) = X, X' is automatically normal. Thus, for a
modal logicX' to have a strict temporalization, it is necessarily
normal. It will be shown that it is also sufficient later. Then
we make use of the following proposition.

Proposition 12: Let ¢ be a class of-models andz? be its
bidirectionalization. Then Log is a strict temporalization of
Log,-

Proof. By Proposition 7, Log is a 1-dimensional normal
modal logic. Similarly, by Proposition 9, Leg is a temporal

logic. Itis clear that Log C Log,s. Thus all we have to show
is that Log» = p(L0oges) coincide with Log.. But this comes

from the fact that forp € @, F¢ ¢ iff Feb 6.

g.ed.

B. Existence

1) Minimal Temporalization: Let X' be a modal logic. If
there is no special requirement, its temporalization always
exists. In fact, the minimal temporal logiqX’) including X
becomes a temporalization by virtue of Proposition 10. Exis-
tence of any temporal logic including' is guaranteed by the
full languaged?. We call 7(X) the minimal temporalization
of X. In this caseX C p(7(X)).

For a strict temporalization, the answer is affirmative for
normal modal logics. To show this, we first note that the
operatorr : P (P') — 7 is the lower adjoint of the
restriction mapping (restricted t&) p : 7 — P (2'). In
fact, it can be easily verified that the following equivalence is
satisfied:

() CT & 5CpT)

for £ € P (#') and1 € .7. Moreover, since is monotone
by Proposition 1, we havel C p(7(X)) C p(T). Thus the



minimal temporalizationr(X') is strict provided that there V. CONCLUSION

exists a strict temporalizatioff of X. Such a temporalization A girect application of existence of a temporalization is that
will be constructed for any normal logic in the next sectiongpe may assume that the modal operatoras SPP and
2) Canonical Temporalization: Now suppose that’ € has IPP by virtue of their imlicit adjoints in any normal modal
2. Then by Canonical Model Theorem (Theorem B)can |ogic. But if one wants to employ the adjoints explicitly, one
be represented as the logic .0fx. Furthermore, considering should indicate which temporalization is considered.
the bidirectionalization of#, £ = Log_,,» is a strict  To resolve this ambiguity, one must go ahead. At this mo-
temporalization of¥’ = Log ,,. by virtue of Proposition 12. ment, the diagram (11) does not tell us any more information.
We call ©* the canonical temporalization of 5. But practiced geometers or categorists notice that our approach
Theorem 4. For an arbitrary normal modal logi&’, the seems like the scheme of classifying space. In fact, if one
canonical temporalizatioi’® is a strict temporalization. can show the following conjecture, many information can be
Corollary 3: For a normal modal logic}/, the minimal extracted from the diagram.
temporalizationr (X)) is a strict temporalization of. Conjecture 1. In the diagram (11)Wr is a fibre product
for p1 - WT(Z) — Wy and Lpy(T) * Wp]_(T) — Wx.
From this conjecture, it follows that the vertical surjection

) ) p1 : M5y — M classifies the temporalization df, that
To make use of canonical models to illustrate the tempqg 5 temporalization of can be induced from a horizontal

C. Sructure of Temporalization

alization procedure, we refer to the following lemma ([15]):injecti0n LW W

Lemma 2: Let s < r be non-negative integers and :
®" — @*° be the restriction mapping. Furthermore, MEtbe
an s-dimensional modal logic included in ardimensional
modal logicA.

1) For any maximalA-consistent sef” C &", p(I') is
maximally X’-consistent.

2) If ps(A) = X, for any X-consistent setA C &1, it is
also A-consistent.

We apply this lemma for a modal logi&’ and its tem- g

poralization T". Since each possible world is consisting of

maximal consistency sets, by virtue of 1) of Lemma 2, wé?!
have a mapping 3]
(4]
[5]
[6]

Wraow — pi(w) € Wx.

®)

Furthermore, we can insert subse{(s) and p;(7") between
Y andT as

LCr(E)CT and £ Cp(T)CT. -

Thus the mapping (8) splits in two ways: [8]

Wr 5 Wosy 25 Ws, 9)
Wr 2 W, 5 Wy 1o0) M

Since both of (9) and (10) are splittings for the sami@0]
mapping (8), we have the following commutative diagram:

o [11]
Wr ——— WT(E)

) |

Woi) —— Wsg

Lp1(T)

[13]

[14]

By combining 2) of Lemma 2 with Lindenbaum’s Iemma[15
it follows that both of the vertical arrows are surjective. On
the other hand, it follows that both of the horizontal arrows
are injective from 1) of Lemma 2 with dimensional argument.

As a consequent, one can conclude

that the uniqueness of strict temporalization because of it is
the unique temporalization induced from the identity mapping
idW2 : WE — WE.

Finally, we note that this scheme of mathematical morpho-
logical analysis also works for normal extension of modal
logics ([15]).
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